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ABSTRACT 
 
This paper presents some recent trends in modeling of anisotropic turbulent near wall flow and heat transfer. The 
aim is to test the predictive performance of explicit algebraic stress models to reproduce the near wall flow and 
heat transfer over a wavy wall. The study focus on explicit algebraic stress models, up to cubic fragments of 
strain and vorticity tensors and rigorously derived from second-moment closure. The stress-strain relations are 
resolved in the context of a two -layer strategy resolving the near wall region by means of a non-linear one 
equation model and the outer core flow is treated by use of the two-equations model. 
In a first step, selected models were employed for calculating the fully turbulent channel flow, which is 
documented by large DNS database. Comparison of Reynolds Stress tensor components shows a perfect ability 
of the models to reproduce reasonably the trend of the flow. The models are then extended to calculate the flow 
over a wavy wall. Comparisons of the present computations, previous calculations with isotropic eddy viscosity 
model and DNS data show that the present models are successful in capturing the anisotropic feature of the flow. 
However, only the trend of variation of the stress tensor components can be reproduced by the models. The 
predicted results show also, the shortcomings of the standard law of the wall for predicting such type of flows 
and consequently suggest that direct integration to the wall must be used instead.  
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NOMENCLATURE 

ix  general non-orthogonal coordinate system 
J  Jacobien of the coordinate transformation 
φ  time averaged variable 

iC  convection term 
φ
iD  diffusion term 

φS  source term 

ijδ  Kronecker delta 

'' jiuu  Reynolds stress tensor 

θ'ju  turbulent heat flux 

k  turbulent kinetic energy 

ijΓ  turbulent transport coefficient 

tPr  turbulent Prandtl number 

ijS  mean rate of strain 

 

tν  isotropic eddy viscosity 

µC  model constant, =0.082 

ε  rate of dissipation of k  

µl , εl  length scales, eqs (7) and (9) 
κ  von Karman constant, =0,4  

µf  damping function, eq. (8) 

yR  turbulent Reynolds number, eq. (10) 
ρ  density 

H  inter wall spacing  
am  wave amplitude 
λ  wave length 

τU  friction velocity, ( ρτ w ) 

Re  Reynolds number, ( )νHU  
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1. INTRODUCTION 
 
Wavy wall heat transfer enhancement technique has been used extensively in the design of compact heat 
exchangers as can be seen from the numerous experimental and numerical investigations reported in the 
literature. Recently, Hudson et al. [1] studied experimentally a rectangular water channel where the lower wall 
was constructed with removable Plexiglas plates on which the waves were milled. To insure that a fully periodic 
flow had developed, the LDV measurements were made above the 31st of 36 waves. The wavelength and the 
amplitude were set to ( )H=λ and ( )Ham 05.0= , respectively, where H is the mean height of the channel. 
This experimental work is one of the few studies which provides extensive measurements of the Reynolds 
stresses. The study was followed by Direct Numerical Simulation reported by Maaß and Schumann [2], and 
hence it was selected as a benchmark to validate the dynamic part of the present computation. This type of 
turbulent flow is numerically very challenging, since it is characterized by periodic changes of the pressure 
gradient, curved streamlines, and for important wave amplitude, separation and reattachment can occur. So, it is 
expected that isotropic eddy viscosity turbulence models can not reproduce perfectly the turbulent quantities of 
such flow. The goal of the present study is to test the ability of selected explicit algebraic stress models to 
reproduce the right trend of near wall flow and heat transfer. The wall boundary conditions were applied by 
using a new zonal modeling strategy based on DNS data and combining the EASM turbulence model in the outer 
core flow and a one equation model resolving the near-wall region. This strategy was initialized by Rodi et al. 
[3] and tested with success in previous computations [4]. 
 
2. THE MATHEMATICAL MODEL 
 
The mathematical model consists of the RANS, the two-equation eddy viscosity k-ε turbulence model and the 
energy equation. The governing equations for steady, turbulent, incompressible flows in non-orthogonal co-
ordinates using Cartesian velocity components can be written in a generalized form as follows: 

( )1

J x i
C i D i S

∂

∂
φ φ

φ+ = ,                              (1) 

Where φ is the considered time-averaged variable, J is the Jacobian of the coordinate transformation, Ci, Di
φ  

represent respectively the convection and the diffusion terms and Sφ  is the source term. The above terms for 

each considered dependent variable are explicitly indicated in the previous paper [4].  

A first computation was done where the Reynolds-stress tensor and the turbulent heat flux are approximated 
within the context of the k-ε turbulence model and the near-wall viscosity-affected region is resolved with a one-
equation model [3]. The two-layer approach represents an intermediate modeling strategy between wall function 
and pure low-Reynolds number model. It consists of resolving the viscosity-affected regions close to the wall 
with a one-equation model. In the outer core flow, the usual eddy-viscosity hypothesis is used, applying a linear 
relation of the Reynold-stress tensor to the velocity gradient as follows: 

ijijijji Skuu Γ−= 2
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where ijδ is the Kronecker delta, 2''
jiuuk ≡  is the turbulent kinetic energy, and ijS is the rate of strain tensor. 

For high-Re flows, the turbulent transport coefficient ijΓ is conventionally made isotropic and proportional to a 

velocity scale ( )k~  and a time scale ( )εk , characterizing the local rate of turbulence and is given by:  

εν µ
2kCtij ≡≡Γ        (4) 

where tν is known as the is otropic eddy viscosity, ε represents the rate of dissipation ofk , and µC stand for a 

model constant. The distributions of k and ε are determined from the conventional model transport equations of 
Jones and Launder [5], and standard values can be assigned to the model constants. In this flow region the 
turbulent Prandtl number is usually fixed at 0.9. In the one equation model, the eddy viscosity is made 

proportional to a velocity scale determined by solving the k -equation, and a length scale µl prescribed 
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algebraically. The dissipation rate ε  is related to the same velocity scale and a dissipation length scale εl , also 

prescribed algebraically [3]. Such model has the advantage of requiring considerably fewer grid points in the 
viscous sub-layer than any pure Low Reynolds scheme. Also, because of the fixed length-scale distribution near 
the wall, these models have been found to give better prediction for adverse pressure gradient boundary layer 
than pure ε−k  models.  

The present two-layer model is a re-formulated version of the so-called ( )2'v  velocity-scale based model (TLV) 

proposed by Rodi et al. [3]. In a recent study Azzi and Lakehal [4] re-incorporate 21k as a velocity scale instead 

( ) 21
2'v   and µl and εl are re-scaled on the basis of the same DNS data of Kim et al. [6]. This model will be call 

hereafter as SKE-TLV model and defined as follows: 

µµν lkCtij ≡≡Γ        (5) 

εε lk 23=         (6) 
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µρ ykRy =        (10) 

Where 4,0=κ and 082,0=µC . The outer and the near-wall model are matched at the location 

where 95.0=µf , indicating that viscous effects become negligible. More details can be found in [4], where the 

model is tested for a fully developed channel and applied for a film cooling configuration. 
 
Three Explicit Algebraic Stress Models were selected to be used in comparison with the reference model cited 
above. The idea of such models is to approximate each of the Reynolds stress components in order to keep the 
anisotropic features of the Reynolds stress models without solving their transport equations. The commo n 
starting point of this type of models is the assumption of homogeneous turbulent flows in the limit of 

equilibrium, leading to a similar explicit expression for ''
jiuu which, in non-rotating frames takes the following 

form:  
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where the 
n

ijT are the products of the strain and vorticity tensors, ijS and ijΩ . The available models differ in the 

way the coefficients nC and µC
~

are determined, and in the number of strain and vorticity-stress products, i.e., 

quadratic, cubic, etc. Three model variants have been selected in the present study: one of them is quadratic and 
two are cubic with respect to ijS and ijΩ ; namely the quadratic model of Gatski and Speziale [7] (GS), the 

cubic model of Craft et al. [8] (CL96) and again the cubic model of Lien et al. [9] (LC96). Details of each of 
these models can be found in the corresponding references.  
 
3. NUMERICAL PROCEDURE 
 
The numerical procedure used to calculate the test case is based on a finite-volume approach for implicitly 
solving the incompressible Reynolds Averaged Navier Stokes equations (RANS) on arbitrary non-orthogonal 
grids, employing a cell-centred grid arrangement. The momentum-interpolation technique of Rhie and Chow 
[10] is used to prevent pressure-field oscillations and the pressure-velocity coupling is achieved using the 
SIMPLEC algorithm of Van Doormal and Raithby [11]. The resulting system of the algebraic difference 
equations is solved using the Strongly Implicit Procedure (SIP) of Stone [12]. The convection fluxes are 
approximated by employing the QUICK scheme for all variables applied in a scalar form by means of a 
deferred-correction procedure and bounded by the Van-Leer Harmonic function as limiter. The diffusive fluxes 
are, however, approximated using second-order central differences. More details of the mathematical 
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formulation, which are now a standard material and well known to most investigators, can be found in the 
following references [13-14]. 
 
4. COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS 
 
Figure 1 shows the computational domain and the boundary conditions. The wavy and the flat plate are placed 
with a mean spacing( )1=H . The amplitude and the wavelength of the lower sinusoidal wavy wall are 

( )Ham 05.0=  and ( )H=λ , respectively. The upstream and downstream flat sections ( λ4  and λ2  in  
length) are used for flow adjustment and flow recovery, respectively. This technique was used previously with 
success by Patel et al. [2]. The first run was done for a 80H straight channel and a fully developed flow 
distribution at the exit which was subsequently used as the inlet flow boundary conditions for the next 
computations. The Reynolds number was set as in DNS computations [2] at ( ) 6760Re =νHU . The turbulence 
intensity is assigned a value of 5% and the turbulence dissipation is calculated based on a turbulent viscosity 
equal 50 times the laminar viscosity. At the outflow boundary, zero-gradient conditions are imposed for all 
dependent variables. 
 
5. GRID MESH 
 
The quality of a computational solution is strongly linked to the quality of the grid mesh. So a highly 
orthogonalized, nonuniform, fine grid mesh was generated with grid nodes considerably refined in the near-wall 
region. The normalized y+ values at the near wall node are less than unity, and care is taken so that the stretching 
factors are kept close to unity. Figure 2 shows a close-up of the computational grid used for the case with 

Ham 10.0= . The grid adopted for the computations was obtained after a series of tests and consists of 42,100 

grid nodes (disposed on a global array 100421× nodes in x, and y directions). 
 
6. RESULTS AND DISCUSSION 
 
Figures 3, 4, 5 and 6 compare the normalized mean velocity, turbulent kinetic energy, normal stress component 
and shear stress profiles with DNS data. The comparison is done until the middle of the channel and at four 
streamwise locations of the seventh wave that correspond to the divergent, trough, convergent and crest positions 
respectively (x/H= 0.3, 0.5, 0.8  and 1.0). The first panel of each figures show reasonable agreement for the mean 
velocity profiles. The reverse flow occurring in the first half of the wave (x/H= 0.3 and 0.5) is clearly captured 
by all models. The present computation confirm what is expected that most turbulence models are able to 
reproduce reasonably the velocity profiles. However, the turbulent kinetic energy presented in the second panel 
is globally underpredicted at all stations and by all models. As it was observed in an earlier test on flow over flat 
plate [4], this underprediction is a consequence of an overpredicted value of the turbulence dissipation in the 

region where +k reaches its peak value. However, the underprediction is more consistent in this wavy wall case. 
It can also be observed that turbulent kinetic energy is represented by very different plots along the streamwise 
direction of the wave and until approximately 0.25H normal to the wall. The maximum peak is observed at 
x/H=0.5  in the streamwise direction and roughly at 0.05H normal to the wall. We note also, that all models 

reproduce perfectly the trend of lateral variation of +k at all stations. 
Panel ( c ) of the figures represent the streamwise normal stress component compared with DNS data. Here, the 
difference between the models is clearly perceptible. One can see that the ske-TLV model is unable to reproduce 
the right trend of the ''uu profile. At divergent and convergent stations which correspond at x/H= 0.3 and 0.8 
respectively (figures 3c and 5c) the GS -LT and CL96 are both able to reproduce the trend of DNS data while in 
the other two stations the prediction is poor, specially at figure 6c where occur the first peak near the wall.  
The last panel reproduce the shear stress compared to DNS data. Except at divergent station (x/H= 0.3) only the 
trend is reproduced by all models. 
Figure 7 shows the normalized logarithmic axial velocity and temperature profiles at trough and crest of the 

seventh wave computed with the ske-TLV model. In the figure, +U and +y are computed with the friction 

velocity τU based on the local wall shear stress. The standard velocity and temperature logarithmic laws are also 

plotted in the figure. For comparison, the computed profiles for the flat plate and for the trough and crest of 
wavy wall (0.05H)  are presented. The most important observation is that a standard law is clearly not applicable 
in such complicated configuration. The strong adverse and favorable pressure gradients are responsible for the 
new trend shown by the plots. At the crest station, which corresponds to mildly favorable pressure gradient, the 
velocity and temperature distributions are underpredicted compared with the logarithmic law. At the second 
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station, which corresponds to the trough, the strong adverse pressure gradient is responsible for the 
overprediction of  the velocity profile compared with that of the logarithmic law. Between the two stations, it can 
be seen and as expected that there is a zone where the profiles agree with the logarithmic law due to the near 
zero pressure gradient.  
The velocity vector field and the temperature contours are presented in figures 8 and 9. Having in mind that zero 
value is assigned to the wall and unity value for the inflow, one can see that reattachment points are always 
recognized by high temperature gradient. We can also see that temperature contours, which are straight in the 
flat-plate channel, are distorted in the recirculation region when increasing the amplitude waves. This supports 
the fact that the boundary layer is perturbed by eddies as it is confirmed by the variation of the local Nusselt 
number through one wave in the fully developed region (figure not presented here). The minimum and the 
maximum Nusselt numbers are located near the separation and the reattachment points, respectively. 
 
7. CONCLUSIONS 
 
Numerical results for the turbulent flow and heat transfer in a two-dimensional channel with wavy wall are 
presented. The wavy channel studied corresponds to the geometry of Maaß & Schumann [6]. Special attention 
has been focused on periodic, fully developed thermal and flow fields. Computations have been performed by a 
finite volume method, solving flow and energy equations. The near-wall viscosity-affected region is resolved 
with a one-equation model while the outer core of the flow is resolved with standard ε−k model as while as 
with three selected explicit algebraic stress models. The two-layer model is found to be successful in capturing 
most of the important physical features of such a flow with reasonable amount of memory storage and computer 
time. The predicted results are globally in good agreement with published DNS data and the EASM models are 
successful in capturing the anisotropic features of the flow. However, only the trend of variation of the stress 
tensor components can be reproduced by the models and no clear pictures can be drawn from the present test. 
The predicted results show also the shortcomings of the standard law of the wall for predicting this type of flows 
and consequently suggest that direct integrations to the wall must be used instead. 
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Figure 1 : Geometry and Boundary conditions of the computed wavy wall channel 

 

 
Figure 2: Close-up of the computational grid for the case with 0.1H of amplitude 
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(a) Normalized streamwise mean velocity 
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(b) Normalized turbulent kinetic energy  
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( c ) Normalized turbulent intensity 
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(d) Normalized Reynolds shear stress 

Figure 3: Comparison with Maas & Schumann’s [2] DNS computation at x/H=0.3. 
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(a) Normalized streamwise mean velocity 
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(b) Normalized turbulent kinetic energy  
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( c ) Normalized turbulent intensity 
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(d) Normalized Reynolds shear stress 

Figure 4: Comparison with Maas & Schumann’s [2] DNS computation at x/H=0.5. 
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(a) Normalized streamwise mean velocity 
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(b) Normalized turbulent kinetic energy  
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( c ) Normalized turbulent intensity 
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(d) Normalized Reynolds shear stress 

Figure 5: Comparison with Maas & Schumann’s [2] DNS computation at x/H=0.8. 
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(a) Normalized streamwise mean velocity 
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(b) Normalized turbulent kinetic energy  
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( c ) Normalized turbulent intensity 
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(d) Normalized Reynolds shear stress 

Figure 6: Comparison with Maas & Schumann’s [2] DNS computation at x/H=1.0 
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(a) velocity profile (b) temperature profile 

Figure 7: Law of wall for Velocity and temperature at trough and crest of the wavy wall, am=0.05. 
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Figure 8: Stream function and vector plot for 
amplitude wave 0.05 H. 

Figure 9: Contours of a dimensional temperature for 
amplitude wave of 0.05 H. 

 


