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ABSTRACT 
 
 

The quest of renewable energies that preserves the environment is an issue of major importance. Wind 
energy is one typical example among many others. The aerodynamic characteristics of wind turbines are closely 
related to the geometry of their blades. The innovation and the technological development of wind turbine blades 
can be centered on two tendencies. The first is to improve the shape of the existing blades, in order to achieve an 
optimal circulation. The second is to design new shapes of bladess in order to get some more ambitious 
aerodynamic characteristics.   

This paper present an  airfoil analysis code achieved by solving the direct problem. The 2D 
incompressible potential flow model has been used. In the light of the singularities method or Panel method, 
source-vortex distributions over the airfoil contour are used to compute the flow characteristics. The accuracy 
and the validity of the results are tested using experimental and numerical results obtained from  Wind Turbine 
Airfoil Catalogue “Risø National Laboratory, Roskilde, Denmark , August 2001”. 

 
 

KEYWORDS: Singularities, incompressible potential flow, Aerodynamics, Lift, drag, pitching moment. 
 
Nomenclature  
 
Z    The complex plane 
Zi    Coordinate of point i on a line segment in the           

complex plane 
ZT   Coordinates of the trailing edge 
x     Abscissa of the Cartesian coordinate system 
y     Ordinate of the Ca rtesian coordinate system 
S     Curvilinear distance on the airfoil contour 

x     Unit vector in the x-direction 

y     Unit vector in the y-direction 

n     Normal unit vector of the local coordinate 
system linked to the airfoil 

s      Tangential unit vector of the local coordinate 
system linked to the airfoil 

V 0    Free stream velocity 

w      Induced velocity 
us       Tangential component of the induced 

velocity 

usi      Tangential component of the induced 

velocity of the ith panel  

vn      Normal component of the induced velocity 
q       Source strength 
q i      Source strength on the ith panel 

 
Subscripts 
c      Collocation point 
ex     Upper surface of airfoil 
in      lower surface of airfoil 
Greek Symbol 
 
γ     Vortex strength 

ϕ    Velocity potential 
ψ    Stream function 
 
θ    Angular distance between local coordinate 

system and Cartesian coordinate system 
α    Attack angle at the leading edge of the airfoil 
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1.  INTRODUCTION 
 

Incompressible inviscid flow is governed by Laplace’s equation. An extremely general method to solve 
this equation is the singularities method. 

The complex potential that characterises flow over airfoils can be induced by various distributions of 
singularities. The choice of the type of singularities to use depends on the boundary conditions imposed. By 
choosing either the Dirichlet or the Neumann boundary condition, the incompressible and irrotationnal flow over 
an airfoil can be treated using either the velocity potential or the stream function. These two quantities joined 
together  constitute the complex  potential. The complex potential  induced by a segment of a blade profile is a 
multi-values function and the correct value has to be taken from an appropriate sheet of the Riemann surfaces. 
For the analytical formulations of a homogenous density distribution of sources and vortices over a segment of 
an airfoil contour, the multi-value part is located at one of the end points of each segment. The computation is 
structured  to get the right definition of the multi-values function with respect to the relative positions of the 
induction element and the reception point. 

The resolution of the field problem yields the source vortex distributions and the velocity distributions 
over the contour of the airfoil. The lift forces, drag forces, moments and the pressure distributions are then 
computed. 
 
 
2.  COMPLEX POTENTIAL OF THE SIMPLE LAYER AND THE INDUCED 

VELOCITY 
 
  In the complex plane z, consider a source  and vortex distributions applied on a line segment [ ]z,z 21 ; if 

the density )iq( γ+  is constant over each segment, the complex potential induced at a point z is given by [1]: 

                            ( ) ( ) ( )( ) ( ) ( )( )[ ]zzzze zLogzzLogziqizf i
1122

θ− −−1−−−−1−π2
γ+=ψ+ϕ= 0  

We notice the existence of two multiform functions Log(z-z1) and Log(z-z2) . To eliminate one of them, we; 
proceed as follows : 

( ) ( ) ( ) ( ) ( )[ ]zzLogzzzzzzLogzzzze
iqi i
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Where ( )zzarg 120
−=θ  

Lets pose : Zn=z-zn , 2
−=η 12 zz  and  ( ) zzSezz i

12
θ−

12 −=∆=−
0  ; where 21= ,n  then (I) becomes : 
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The function 
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ZLog
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1 , is uniform but discontinuous across the  segment [ ]z,z 21 . 

To  precise the determination of the multiform function  LogZ1, we effectuate a cut of the Riemann surface along 

the  segment [z1,z2] and we prolong the cut to the side of z1 [4;6]. As we can write : θ+= iii iZLogZLog  , 

where θi   is the angle between  Zi and the x-axes, there is no indetermination for ϕ  with a distribution of 

sources q alone, nor for ψ  with a  distribution of vortices γ alone. 
As the potential is defined with respect to a reference value, we can neglect the constant term ;    

( )







π
∆γ+− 2

siq  , in equation (II). 

By deriving (II), we obtain the induced velocity on the segment [ ]z,z 21 given by: 
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In the local coordinate system s  and n  in the directions tangential and normal to the segment [ ]z,z 21 and 
centered at the point z , (III) is written as: 
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where ? is the angle between the tangential unit vector s and the x -axes and us  and vn  are respectively the 
tangential and normal components of the induced velocity. 
 
 
3.  THE SINGULARITIES METHOD APPLIED TO AIRFOILS 
 

 
           We consider an airfoil of boundary S transverse to the wind direction fig.1. The                                                                                            
wind is moving with an unperturbed upstream velocity V0  at an incident angle a .The irrotationality condition is 

automatically satisfied if the flow field is characterised by the velocity potentialϕ .The relative velocity of the 
air over the airfoil is given by[3]: 

                                                                            ϕ+∇=VV 0                                                                     (V) 

The continuity equation leads to the Laplace equation: 

                                                                               
0=ϕ∇2

 (VI) 

With the incident angle a defined; V0 is given by :  

                                                                    jsinicosV α+α=0  .                                                               (VII) 

On the contour of the airfoil, the tangential unit vector s  is oriented in the clockwise direction and the unit 

normal vector n is deduced from s  by a rotation of 2π . 

If ?  is the inclination of s with respect to the x-axis, then we can write : 

                                      jsinicoss θ+θ=         and        jcosisinn θ+θ−=                                         (VIII) 
The slip condition on the airfoil contour can be  written : 
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                                                 n.Vn.grad 0−=ϕ⇔                                                                         (IX) 

                                                 
θα−θα=ϕ⇔ cossinsincosdn

d
                                                                   (X)  

                                                                                                                                                                                                                                                                                                                                                                                                           
In order to apply this boundary condition, sources are distributed on the airfoil contour ; but in other to produce 
lift , vortices are also distributed. The source strength is constant over each line segment but has a different value 
for each segment while the  vortex strength is constant and equal over each line segment. The Kutta-Joukowsky 
condition enables us to determine the unknown vortex distribution  on the airfoil contour. The Kutta-Joukowsky 
condition states that the flow must leave the trailing edge smoothly. The Kutta condition is satisfied by equating 
velocity components tangential to the segments adjacent to the trailing edge on the upper and lower sides. This is 
equivalent to imposing a second stagnation point at the trailing edge zT in the case of thick airfoils. Lets consider 

two points zex and z in  situated respectively on the last segments of the upper side and lower side  of the airfoil 

adjacent to the trailing edge with : 0→−=− zzzz TinTex . The Kutta-Joukowsky condition at these two points 

is written from equation (V) as follows: 

                                                     ( ) ( )( )
in

'
sinex

'
sex sVs.V ϕ+⋅−=ϕ+ 00  (XI) 

where : θα+αθ=0 sinsincoscoss.V  
As the potential f  is generated by a distribution of sources with variable densities and a homogenous distribution 
of vortex over the contour S of the blade profile, we can write[3] :  

                                                             ( ) 







∫ −π2

γ+=ϕ 0
θ−0 0

s
dzezzLogiqR i                   (XII) 

where R stands for the real part of the expression, q the source strength, is an unknown function of the 
curvilinear abscissa S and ? , the vortex strength, is an unknown constant. By combining (IV),(IX) and (XII),the 
boundary conditions can be written as: 
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The contour of the airfoil is discretized in to K( NK∈ ); line segments following the clockwise direction 

from the trailing edge of the lower side to the trailing edge of the upper side. The segments are numbered from 1 

to K. Let the inductor segment be the ith segment, its extremities are taken to be ( )z
i1  and ( )z

i2  ; the 

collocation point where the boundary conditions are applied is the centre ( )zc j
 of the jth  receptor segment. The 

airfoil contour is discretized  such that the first and last segments adjacent to the trailing edgezT are of the same 

length .The points zex and zin    are merged up respectively with the points ( )zc 1
et ( )zc k  . 

To obtain quality results  the node points are smoothly distributed while concentrating points at the trailing and 
leading edges using the spacing function y(x) whose expression is: 
 

                                                            ( ) ( )xsinxxy π2
π4
1−=                                                                         (XV) 

 At the collocation point of each segment, the tangential direction is taken in the sense zz 21   . 
From equations (XIII) and (XIV), we can then write the following system of equations for the different 
collocation points:  
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where: 
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      for  1≤ i ≤k  and   1≤ j ≤k  (XVIII)   

For i=j, the influence coefficient Aii can take the value 21  as well as 21−  ; as ( )zc i   is considered situated on 

the positive side of the normal direction, it is convenient to impose 21=A ii ; details can be found in [1]. 

 
We notice that the appropriate choice of the singularities in relation to the boundary conditions leads to the 
diagonal terms [A ij] being preponderant and the system of equations (XVI) being well conditioned .  
   
         The resolution of the system (XVI) yields the densities of the distributed sources and vortices. 
Our goal is to evaluate the pressure distribution over the contour of the blade profile, it is then necessary to 

evaluate the tangential velocities at the different collocation points. At ( )zc i
 for example we can write [1,7]:  
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which can be written for 1iq =γ+ ; as: 

                                                                      sBs.Vu iiji0si +=                   (XX) 

Where B j,i   is the influence coefficient, given by :  
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In equation  (22), when i=j , the expression 
( ) ( )
( ) ( )jcic

j1ic

zz
zz

RLog −
−

 can take the values 21   or  21−  ; the value  

21 should be imposed.      
 
The pressure coefficient can then be computed from: 

                                                                           V
u1C 2

0

2
si

pi −=                                                                         (XXIII) 

Later on, the lift , drag and moment coefficients are computed. 
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4.  RESULTS AND DISCUSSIONS 

The numerical code developed has been executed using the airfoils  FFA-W3-241 and NACA 63(2)215 
represented in fig.2 and fig.3 
 

 

 
           Fig.2. FFA-W3-241 airfoil                                              Fig.3. NACA 63(2)215 airfoil 

 
 

We check the sensitivity of the numerical solution to the number of panels by comparing force  results 
and pressure distributions with increasing number of panels. The numerical code developed uses an inviscid 
incompressible flow field model; the drag is negligibly small. Fig. 4 shows the drag coefficient approaching a 
constant value. In fact the drag is never zero because apart from viscous effects, there is also an additional form 
drag arising from the local variations of pressure on the airfoil surface. Fig. 5 shows the lift becoming constant as 
the number of panels increase. The results plotted in fig.4 and fig.5 indicate that 80 to 100 panels should be 
enough panels. Note that the lift and drag are presented in extremely expanded scales. The sensitivity of pressure 
distributions to the number of panels is also investigated. Fig.6 contains a comparison between 40 and 80 panel 
cases. It reveals that the stagnation pressure region on the upper surface of the leading edge is not well distinct 
with 40 panels. The pressure distribution at the lower surface of the airfoil just next to the lower stagnation 
pressure region is also not clearly resolved with 40 panels. In this case it appears that the pressure distribution is 
well defined with 80 panels. This is confirmed in fig.7, which shows that it is almost impossible to identify the 
difference between the 80 and 100 panel cases. 
 Having examined the convergence of the numerical solution, we investigate the agreement with 
experimental data. 

Fig.8 compares lift from the inviscid solution obtained from the code developed with experimental data 
from [5]. Agreement is good at the low angles of attack where the flow is fully attached. The agreement 
deteriorates as the angle of attack increases, and viscous effects start to show up as a reduction of lift with 
increasing angle of attack, until, finally the airfoil stalls.  
 Fig.9 presents a comparison of the computed  moment characteristics (about the quarter chord point) 
with experimental data. We notice here again that agreement is only good for the for low attack angles and 
deteriorates as separation starts to occur. 

In addition to the force and moment comparisons, we need to compare the pressure distributions 
predicted from the numerical code with experimental data from [5]. Fig.10 and fig.11 provide two examples. The 
FFA-W3-241 experimental pressure distributions and the NACA 63(2)215 experimental pressure distributions 
are compared with the numerical predictions. The agreement is very good. The primary area of disagreement is 
at the trailing edge. Here viscous effects act to prevent the recovery of experimental pressure to the levels 
predicted by the inviscid solution[7]. The other areas of disagreement be it on the upper surface of the FFA-W3-
241 airfoil or on the lower surface of the NACA 63(2)215 airfoil suggest imprecisions of the experimental attack 
angles and the influence of viscous effects [2].  
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Naca 63(2)215 airfoil, alpha=4°
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Fig.6: Pressure distribution from the numerical                                                                    
code , comparing results using 40 and 80 panels  

NACA 63(2)215, Alpha=4°
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Fig.7: Pressure dis tribution from the numerical 
code,     comparing results using 80 and 100 panels  

NACA 63(2)215 Airfoil,Alpha=4°
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Fig.4: Change of drag with increasing number of 
panels  

NACA 63(2)215 Airfoil, Alpha=4°
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Fig.5: Change of lift with increasing number of 
panels  
 

FFA_W3-241 airfoil
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Fig.8:Comparison of Computed lift predictions with 
experimental data. 

 

 FFA-W3-241 airfoil
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Fig.9: Comparison of Computed moment 
predictions with experimental data. 



 8 

 
 
4. CONCLUSION 
 

A 2D inviscid computational code for airfoil analysis has been developed based on the singularities 
method. The results obtained have shown considerable agreement with experimental data obtained from Risø 
National Laboratory, Roskilde, Denmark, August 2001. 

 In reality viscous effects are always present and the future versions of this code shall be computed to 
capture viscous effects.  
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NACA 63(2)215 Airfoil,Alpha=5.741
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Fig.10: Comparison of Computed pressure 
distribution with experimental data for NACA 
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FFA-W2-241 Airfoil, Alpha=6.661
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