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Abstract: In this work, we numerically study the three-dimensional conjugate mixed convection heat transfer in 

a horizontal annulus equipped by longitudinal attached fins on internal surface of outer cylinder. The external 

pipe and the fins are heated by an electrical current passing through their small thickness. The number of 

longitudinal fins studied is: 2 vertical, 4 and 8 fins. The convection in the fluid domain is conjugated to thermal 

conduction in the pipes and fins solid thickness. The physical properties of the fluid are thermal dependant. The 

heat losses from the external pipe surface to the surrounding ambient are considered. The model equations of 

continuity, momenta and energy are numerically solved by a finite volume method with a second order 

spatiotemporal discretization. The obtained results showed that the axial Nusselt number increases with the 

increasing of number and height of fins. The participation of fins located in the lower part of the tube on the 

improvement of heat transfer is higher than the participation of the upper fins.  
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1. Introduction  
Finned tubes are often used in many engineering sectors for extend the contact surface between the tube 

wall and the fluid and improve the heat transfer; the researchers have studied the problem of optimizing the 

shape and geometry of attached fins in order to increase heat transfer effectiveness. Many investigations, both 

experimental and numerical, have been conducted for different kinds of internally finned tubes. Patankar et 

al.[1], presented an analytical model for fully developed turbulent air flow in internally finned tubes and annuli. 

In their study, the longitudinal attached fins in the inner wall were considered. With thermal boundary conditions 

such the constant heat flux at the inner surface, the results of this study concerns the heat transfer and the 

pressure drop coefficients. The obtained results are presented as determining the Nusselt numbers and 

coefficients of charge loss. Agrawal et al.[2], studied numerically the effect of varying the geometric parameters 

and the Reynolds number on the pressure drop and the heat transfer. This study was conducted for the case of 

longitudinal fins attached to the inside of an annulus. In the numerical work of Farinas et al. [3], the authors 

studied the laminar mixed convection in an annulus with inner fins for two, four and sixteen fins. The inner wall 

is hot while the outer wall is cold. The Grashof number varied from 10
2
 to 10

4
. The conservation equations are 

solved by the finite difference method. The results are presented for the air with Rayleigh numbers varied from 

10
3
 to 10

6
 for different configurations of fins (fine, rounded or divergent) and different lengths of blades (L = 

0.25, 0,5 and 0,75). The results are presented as isotherms graphs, velocity fields and the variation of Nusselt 

numbers. The heat transfer is enhanced to a rounded configuration of the fins. Similar studies were also treated 

experimentally by Wei-Mon Yan et al. [4], B. Yu et al. [5] and Wang et al. [6]. 

In the present work, we have studied numerically the heat transfer by mixed convection in annulus 

between two concentric cylinders. Longitudinal fins are attached in the inner wall of the outer cylinder. The 

mixed convection is conjugated with the thermal conduction in the pipes and fins walls. The physical properties 

of the fluid are thermal-dependent and heat losses to the outside environment are taken into account while the 

inner cylinder is adiabatic at its inner wall. The objective of our work is to study the improvement of heat 

transfer in the annulus using 2, 4 and 8 longitudinal fins generating heat. 

 

2. Mathematical Model 
Figure 1 illustrates the geometry of the problem studied. Two long horizontal concentric cylinders having 

a length L=1m, the inner tube with an internal diameter D1i=0.46 cm and an outer diameter D1o=0.5 cm, while 

the outer tube with an internal diameter D2i=0.96 cm and an outer diameter D2o=1 cm. Longitudinal fins are 

attached to the inner wall of the outer cylinder. At the entrance, the flow has an average axial velocity equal to 

9.88 10
-2

 m/s and a constant temperature of 15 °C. 
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The Reynolds and the Prandtl numbers are equal to 399.02  

and 8.082 respectively. The non-dimensional fluid viscosity and 

thermal conductivity variations with temperature are represented  

by the functions μ
*
(T

*
) and K

*
(T

*
) obtained by smooth fittings of  

the tabulated values cited by Baehr and Stephan [7]. 

 

                                                                                                                    Figure 1: Geometry of the Problem 

2.1. Modelling Equations 

2.1.1.  Mass Conservation Equation 
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2.1.2. Radial Momentum Conservation Equation 
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2.1.3. Angular Momentum Conservation Equation    
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2.1.4. Axial Momentum Conservation Equation 
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2.1.5. Energy Conservation Equation 
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2.2. The boundary Conditions 

2.2.1 At the Annulus Entrance : Z
*
=0 

In the Fluid Domain:
                                  1,0 ****  zr VTVV                                                                         (8) 

In the Solid Domain:    
                               

0****  TVVV zr 
                                                                      (9) 

2.2.2 At the Annulus Exit : Z
*
=217.39 

In the Fluid Domain:
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In the Solid Domain:
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2.2.3 At the Inside Wall of Internal Pipe, r
*
=0.5 :           0
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2.2.4 At the Outer Wall of External Pipe: r
*
=1.087 
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The emissivity of the outer wall   is arbitrarily chosen to 0.9 while hc is derived from the correlation of 

Churchill and Chu [8] valid for all Pr and for Rayleigh numbers in the range 10
−6

 ≤ Ra ≤ 10
9
. 
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2.3. Nusselt Number 

 

At the pipes wall interface (r
*
= r2i

*
=1.0435) the local Nusselt number is defined as:  
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At the fins wall interface (θ= θfin) the local Nusselt number is defined as:  
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3. Numerical resolution 

For the numerical solution of modelling equations, we used the finite volume method well described by 

Patankar [9]. The using of this method involves the discretization of the physical domain into a discrete domain 

constituted of finite volumes where the modelling equations are discretized in a typical volume. We used a 

temporal discretization with a truncation error of   2*t  order. The mesh used contains 52×88×162 points in the 

radial, azimuthal and axial directions and the considered time step is 4-* 105  t . The steady state is controlled 

by the satisfaction of the global mass and energy balances as well as the leveling off of the time evolution of the 

hydrodynamic and thermal fields. 

 

4. Results and discussion 
All the results presented in this paper were calculated for Reynolds number, Re = 399.02, the Prandtl 

number, Pr = 8.082, the Grashof number is equal to 12801 while the fin height H
*
 is equal to 0.12. For the 

brevity of the paper, the results obtained for another fin height H
*
 (=0.24) are not presented. 

4.1. Development of hydrodynamic flow  

The obtained flow for the studied cases is characterized by a main flow along the axial direction and a 

secondary flow influenced by the density variation with temperature, which occurs in the plane (r
*
− θ). These 

flows are presented for 8 longitudinal fins.  

 

         

 

 

 

 

 

 

 

 

 

 

        Figure 2: Development of the secondary flow                         Figure 3: Axial velocity profile at the  

                                  at the annulus exit .                                                            annulus exit. 
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In figure 2, we present the secondary flow vectors at the annulus exit (Z
*
=217.39). The transverse flow is 

explained as follows: the hot fluid moves along the inner wall of the external cylinder from the bottom (θ=π) to 

the top (θ=0), this movement is blocked by the walls of the longitudinal fins. After, a portion of the fluid 

continues moving upwardly under the effect of the thermal buoyancy force while another part is conveyed 

downwardly with the relatively cold fluid which descends near of the inner cylinder. The transverse flow in the 

 ,*r  plane is represented by counter rotating cells; the cells number is proportional to longitudinal fins 

number used. The vertical plane passing through the angles  0  
and     is a plane of symmetry. 

Regarding axial flow, this latter is influenced by the generation of the secondary flow which causes an angular 

variation explained as follows: the thermal viscosity is inversely proportional to the fluid temperature and the 

axial velocity increases with the decrease of viscosity, automatically we will have an axial velocity relatively 

high in the upper part of the annulus where the fluid temperature is greater than that of the lower portion. In 

figure 3, we represent an illustration of the variation of the axial velocity in the exit of annulus (Z
*
=217.39). 

 

4.2 Development of temperature field 
 The angular distribution of the temperature field in the presence of eight longitudinal fins at the annulus 

exit is shown in figure 4. The maximum fluid temperature is equal to 0.5356 situated at the top of the annulus at 

r
*
=1.0435, θ=0 and z

*
=217.39. In this axial position, the minimum temperature of the fluid is in the lower part of 

annulus at θ = π and r
* 
= 0.6450. In figure 5, we represent the variation of the axial temperature at the end of each 

fin at r
*
=0.8169. It is clear that the temperature of the vertical fin placed at θ=0 is highest, followed by fin placed 

at θ=π/4, π/2, 3π/4 and π.  

 

 

 

 

 

 

 

 

 

 

 

                  Figure 4 : Temperature field                                 Figure 5 : Axial  temperature variation of the fins 

            at the exit of annulus.                                                             at r
*
=0.8169 . 

 

4.3   Evolution of the axial local Nusselt number 

 The variation of the Nusselt number at the interface of the outer cylinder is illustrated in figure 6. The 

local Nusselt number at the interface (external pipe-fins) is zero. Apart from these azimuthal positions, the local 

Nusselt number takes a minimum value at the top of the cylindrical interface and a maximum value at the bottom 

of the cylindrical interface. At the exit of annulus, the local Nusselt number of the outer cylinder take a 

maximum value equal to 48.02 at θ=2.8203. The local Nusselt number of the longitudinal fin placed at (θ=π) is 

shown in Figure 7. This number take a maximum value equal to 130.00 at z
*
=217.39 and r

*
=0.8169. 

 

 

 

 

 

 

        

 

 

 

 

 

 

        Figure 6: Evaluation of the local Nusselt                     Figure 7: Evaluation of the local Nusselt number 

        number at the external cylinder interface                                 at the fin interface located at (θ=π).  
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Conclusion  
This study considers the numerical simulation of the three dimensional mixed convection heat transfer in 

annulus equipped by longitudinal fins. The pipe and the fins are heated by an electrical current passing through 

its small thickness. The results show that the increase in the number of fins increases the axial Nusselt number 

especially when the flow is fully developed. The increase in the height of the fin from 0.12 to 0.24 improves the 

average Nusselt number from 41.89 to 60.09 in cases of eight fins. In this case, the maximum heat rate 

transferred to the fluid, is equal to 4.039, and is positioned on the fin located at (θ=0, z
*
=93.07) while the 

maximum Nusselt number equal to 130.00 is positioned on the fin located at (θ=π, z
*
=217.39). 

 

Nomenclature  
  

D1i internal diameter of inner pipe, m 

D1o external diameter of inner pipe, m 

D2i  internal diameter of outer pipe, m 

D2o  external diameter of outer pipe, m 

L     annulus length, m 

H            fin height, m 

g      gravitational acceleration, =9.81m/s
2
 

G     volumetric heat generation, W/m
3
 

Gr
*
  modified Grashof number,  25  sh KDGg  

rh   
radiative heat transfer coefficient, W/m

2
K 

ch           convective heat transfer coefficient, W/m
2
K 

K
*
          non dimensional thermal conductivity, K/K0 

Ks               pipe thermal conductivity, W/m K 

),( *ZNu  local Nusselt number. 

P
*
           non-dimensional pressure,   2

000 / VPP  . 

Pr           Prandtl number, ν/α 
*r           non-dimensional radial coordinate, 

hD/r . 

Re       Reynolds number, 
0h0 DV   

*t        non-dimensional time, 
h0 DtV  

*T       non-dimensional Temperature, 
                   sh KDGTT 2

0 /  

0V
        

average axial velocity at the entrance, m/s 

*V        non-dimensional velocity, 
0

* V/V  

*z        non-dimensional axial coordinate, 
hD/z  

 

Greek Symbols 

α        thermal diffusivity, m
2
/s 

β        thermal expansion coefficient, (1/K) 

ε        emissivity coefficient 

θ        angular coordinate, rad 

μ        dynamic viscosity, kg m/s 

        cinematic viscosity, m²/s 
*        non-dimensional stress,   i00 D/V/   
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