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Abstract: Two-dimensional heat and mass transfer of natural convection in an annular cylindrical space filled 

with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy 

and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular 

space are maintained at two uniform different temperatures and concentrations. The external parameter 

considered is Rayleigh-Darcy number. For the present work, the heat and mass transfer for natural convection is 

studied for the case of aiding equal buoyancies, where the flow is generated in a cooperative mode by both 

temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external 

parameter. 
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1. Introduction  
 

The heat and mass transfer of natural convection was a subject of many theoretical, numerical and 

experimental studies that have dealt with heat and mass transfer confined into different vertical and horizontal 

annular enclosures. The study of heat and mass transfer in annular spaces is of fundamental importance; that is 

because it is often met in many practical applications. These annular spaces have different geometries and can be 

partly or completely filled with porous media. Interest in the phenomena of heat and mass transfer by natural 

convection is due to many potential applications in the engineering processes which involve the chemical and oil 

and gas industries, thermal recovery process, the underground spreading of chemical waste and other pollutants, 

evaporation, cooling and solidification are few other application areas where combined thermo-solutal 

convection in porous media can be observed.  

F.M. Mahfouz [1] has investigated a buoyancy driven flow and associated heat convection in an elliptical 

enclosure. The enclosure which is the space between two horizontal concentric confocal elliptic tubes is heated 

through its inner tube surface which is maintained at either uniform temperature or uniform heat flux.                 

N. Allouache and al. [2] analyzed a solid adsorption refrigerator using activated carbon/methanol pair. It is a 

contribution to technology development of solar cooling systems. The main objective consists to analyze the heat 

and mass transfer in an annular porous adsorber that is the most important component of the system. The porous 

medium is contained in the annular space and the adsorber is heated by solar energy. A general model equation 

is used for modelling the transient heat and mass transfer. Khanafer and al. [3] studied a numerical investigation 

of natural convection heat transfer within a two-dimensional, horizontal annulus that is partially filled with a 

fluid-saturated porous medium. In addition, the porous sleeve is considered to be press fitted to the inner surface 

of the outer cylinder. Kumari and Nath [4] studied the unsteady natural convection flow from a horizontal 

cylindrical annulus filled with a non-Darcy porous medium .The unsteadiness in the problem arises due to the 

impulsive change in the wall temperature of the outer cylinder. The Navier–Stokes equations along with the 

energy equation governing the unsteady natural convection flow have been solved by the finite-volume method. 

Ramadan Y. Sakr and al. [5] presented experimental and numerical studies for natural convection in two 

dimensional region formed by constant flux heat horizontal elliptic tube concentrically located in a larger, 

isothermally cooled horizontal cylinder were investigated. The effects of the orientation angle as well as other 

parameters such as elliptic cylinder axis ratio and hydraulic radius ratio on the flow and heat transfer 

characteristics are investigated numerically. Yong Shi and al. [6] presented a finite difference-based lattice BGK 

model for thermal flows is proposed based on the double-distribution function approach; they applied this model 

to simulate natural convection heat transfer in a horizontal concentric annulus bounded by two stationary 

cylinders with different temperatures. Edimilson J and al. [7] examined a numerical computation for laminar and 
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turbulent natural convection within a horizontal cylindrical annulus filled with a fluid saturated porous medium. 

Computations covered the range of 25 < Ram < 500 and 3.2x10
-4

 > Da > 3.2x10
-6

 and made use of the finite 

volume method. The macroscopic k–e turbulence model with wall function is used to handle turbulent flows in 

porous media. Leong and Lai [8] presented a natural convection in concentric cylinders with a porous sleeve, 

analytical solutions obtained through perturbation method and Fourier transform. The porous sleeve is press-

fitted to the inner surface of the outer cylinder. Both the inner and outer cylinders are kept at constant 

temperatures with the inner surface at a slightly higher temperature than that of the outer. The main objective of 

this study is to investigate the buoyancy-induced flow as affected by the presence of the porous layer.  

Y.D. Zhu and al. [9] presented a natural convective heat transfer between two horizontal, elliptic cylinders 

that was numerically studied using the differential quadrature (DQ) method. The governing equations are taken 

to be in the vorticity-stream function formulation. The coordinate transformation was performed to apply the DQ 

method. An elliptic function was used, which makes the coordinate transformation from the physical domain to 

the computational domain be set up by an analytical expression. Wassim C. and al. [10] presented a new 

calculation code using a two-dimensional finite element method valid in a steady and laminar flow within an 

annular enclosure which is represented by inner circular and outer elliptical cylinders. Mota and al. [11] solved 

the two-dimensional Darcy-Boussinesq equations, governing natural convection heat transfer in a saturated 

porous medium, in generalized orthogonal coordinates, using high-order compact finites differences on a very 

fine grid. The mesh is generated numerically using the orthogonal trajectory method. The code is applied to 

horizontal eccentric elliptic annuli containing saturated porous media. Charrier-Mojtabi [12] carried a numerical 

investigation of two-dimensional and three-dimensional free convection flows in a saturated porous horizontal 

annulus heated from the inner surface, using a Fourier-Galerkin approximation for the periodic azimuthal and 

axial directions and a collocation-Chebyshev approximation in the confined radial direction. The numerical 

algorithm integrates the Darcy-Boussinesq's equations formulated in terms of pressure and temperature. M. M. 

Elshamy and M. N. Ozisik [13] studied numerically a steady-state natural convection for air bounded by two 

confocal horizontal elliptical cylinders for the case of inner hot and outer cold isothermal surfaces. The local and 

average Nusselt numbers were determined for different value of Rayleigh number for different eccentricities of 

the inner surface.  

Our interest in considering an annular elliptical geometry is based on their adaptability to become either 

circular when the axis ratio approaches unity or flat plate when the axis ratio approaches zero. This type of 

geometry can be found in a wide range of applications such the heat exchangers consisting of coaxial tubes. Our 

work is studying the heat and mass transfer of natural convection that occurs in the annular space considered as a 

porous medium saturated with a Newtonian fluid and bounded by two elliptical walls. The effect of Rayleigh-

Darcy number on the flow structure, the heat and mass transfer is examined within a range of Ram= [10-250] 

with buoyancy ratio N=1 and Lewis number Le=0.1. 

 

2. Problem formulation and basic equation  
 

 We consider a thermosolutal natural convection in an annular elliptical space filled with fluid-saturated 

porous medium. Figure 1 represents a cross section of the system. Both elliptic internal and external walls are 

isothermal and impermeable, kept at constant temperatures and concentrations T1, C1 and T2, C2 respectively 

with T1>T2 and C1>C2. The physical properties of the fluid are constant, apart from the density ρ whose 

variations are at the origin of the natural convection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The cross section of the system 



Viscous dissipation is neglected, just as the radiation (emissive properties of the two walls being neglected). 

Soret and Dufour effects are neglected and we admit that the problem is bidimensional, permanent and laminar. 

The porous medium is considered isotropic and homogeneous. The heat and mass transfer by natural convection 

is represented by the following equations within the framework of the Boussinesq approximation: 

- Continuity equation 
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                                                                             (1) 

- Momentum equation 

The classic formulation of Darcy is used for writing the equation of motion: 
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- Concentration Equation 
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The Boussinesq approximation for the combined heat and mass transfer is written as following: 
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It is convenient to define a reference frame such as the limits of the system result in constant values of the 

coordinates. The passage from the Cartesian coordinates (x, y) to the elliptic coordinates  ,  is obtained by the 

following relations: 
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The metric coefficients in the elliptic coordinates are given by:  
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Equations (1), (2), (3) and (4) are re-written in the elliptic coordinates using the metric coefficient h and 

represented respectively by equations (7), (8), (9) and (10).  

                                                                         0











hVhV                                                    (7) 

                  














































































 C
N

T
GF

C
N

T
GF

Kg

h
,cos,sin,sin,cos

1

2

2

2

2

      (8)                                                                      

                                                             



































2

2

2

2

2

TT

h

1
a

T
V

T
V




                   

                               (9) 

                                                            



































2

2

2

2

2

1




CC

h
D

C
V

C
V

                                                     

(10) 

Vη and Vθ are the velocity components in the directions η and θ. The coefficients F (,), G (,) used in (8) are 

given by: 
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The characteristic quantities used for the dimensionless problem between the inner and the outer elliptic 

cylinder are the characteristic temperature and concentration ∆T = T1 – T2, ∆C = C1 – C2. The focal length c in 

the elliptic coordinates is the reference length and the thermal diffusivity of the fluid a, the ratio of the thermal 

diffusivity and the characteristic length (a/c) is the characteristic velocity. The dimensionless mathematical 

model obtained is expressed by the following equations: 

 

                                                                  0HVHV 







 


                 

                                      (11) 

                                                     


























 





2

2

2

2 TTT
HV

T
HV




                  

                                  (12) 

                                                  


























 





2

2

2

21




CC

Le

C
HV

C
HV                                                   (13) 

          



































































































 C
N

T
GF

C
N

T
GFH

m
Ra

h
),()cos(),()sin(,sin,cos.

1

2

2

2

2

    (14) 

 

Where Vη, Vθ are the components of the dimensionless velocity defined by: 
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Ram represents Rayleigh-Darcy number which is defined as: Ram=Ra.Da  

The boundary conditions are expressed as following: 

Hot inner wall with high concentration (η=ηi=cst): 
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Cold outer wall with low concentration (η=ηe=cst): 
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3. Numerical method  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Physical and computational domain 

 

Figure 2 shows the physical and computational domain, to solve (11), (12) and (13) with the associated 

boundary conditions; we consider a numerical solution by the finite volumes method, exposed by [14]. The 

power law scheme was used for the discretization. To solve (14), we consider a numerical solution by the 

centered differences method. The iterative method used for the numerical solution of algebraic system of 

equations is the Gauss-Seidel with an under-relaxation process. Once the temperature and concentration 

distributions are available, the local Nusselt and Sherwood numbers in the physical domain are defined as: 
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4. Results and discussion  
 

Our objective is to analyze the effect of Rayleigh-Darcy number for the case of a cooperative mode of the 

heat and mass transfer. For this reason, we presented streamlines, isotherms and concentration contours for 

different values of Rayleigh-Darcy number for the case when the buoyancy ratio N=1 and for a determined value 

of Lewis number Le=0.1. The Nusselt and Sherwood numbers are presented for different values of Ram. The 

study was carried out for the case of the air and when the eccentricities of the internal and the external ellipses 

are respectively given by e1=0.14 and e2=0.07 in order to obtain a cylindrical configuration and the inclination of 

the system is =0°. 

4.1. Influence of Rayleigh-Darcy number (Ram) on the isolines  

Figures 3 to 6 represent the streamlines, isotherms and concentration contours; we note that these contours 

are symmetrical about the median fictitious vertical plane. The streamlines of the figure 3 show that the flow is 

organized in two main cells that rotate in opposite directions. This is due to upward movement of the fluid 

particles under the aiding buoyancy effect related to temperature and solutal gradients, the fluid heat up along the 

hot wall and the downward movements of the fluid particles which cool along the cold wall under the gravity. 

Isotherms in figure 3 show that the heat transfer is mainly by conduction in the bottom of the annular space, in 

the other hand; isotherms deform in the upper space where there is presence of two counter-rotating vortices. 

This configuration illustrates that the heat transfer is dominated by a convective mode in the upper space, in the 

lower space the heat transfer is dominated by a conduction mode with a slight contribution of the convection. 

The concentration contours in this figure are parallel and concentric closed curves which coincide perfectly with 

the walls profile in the annular space where the mass transfer is purely conducted by diffusion mode  

 

 

 

 

 

 

 

Figure 3: Streamlines, isotherms and concentration contours for Ram=10, N=1 and Le=0.1 

Figure 4: Streamlines, isotherms and concentration contours for Ram=30, N=1 and Le=0.1 



 

 

 

 

 

 

 

 

 

 

In the figure 4 and 5 we notice that with the increase of Rayleigh-Darcy number and the flow remains 

organized in two main cells rotating in opposite directions with an increase in the stream function value due to 

the thermal gradient with increasing Rayleigh-Darcy number. Isotherms show that the convective mode is 

gaining more space in the bottom section under the effect of thermal gradient. The concentration contours show 

that the mass transfer is driven by a diffusive mode with a slight transition in the upper space due to the aiding 

buoyancies. In the figure 5 when the Ram=100 streamlines remain organized in two main cells rotating in 

opposite directions with a decreasing in the upper gap between the rotating cells, the value of stream function is 

also increasing dramatically with the increase of Rayleigh-Darcy number. Isotherms in the same figure show that 

the heat is fully distributed by a convective mode in the whole annular space. The concentration contours start to 

deform in the upper space under the effect of thermal and solutal buoyancies.  Figure 6 shows that the 

streamlines from both cells tend to become adjacent which decrease the gap between the cells in the upper 

annulus space, the flow remains organized in two main cells rotating in opposite directions with very high 

motion, this increase is interpreted in the stream function values that are increasing due to the increase of the 

thermal gradient as consequence of the increase in the Rayleigh-Darcy number.  In the same figure, isotherms 

have a significant change and are increasingly distorted at the top of the annular space due to the increase of the 

thermal gradient. The concentration contours illustrate a solutal stratification relatively decreasing in the upper 

section of the annular space, the distortion of the curves in the upper space shows that the mass transfer is 

conducted by the convective mode which is taking place in the annular.  

 

4.2. The effect of Rayleigh-Darcy number on local Nusselt and Sherwood numbers 

  

In the figure 7 we illustrated the variation of local Nusselt and Sherwood numbers on the inner wall of the 

cylinder in term of Rayleigh-Darcy number. For the local Nusselt number this variation allows us to note that 

with the increase of Rayleigh-Darcy number, the value of local Nusselt number increase significantly due to the 

increase in the thermal gradient which is obvious. The Nusselt variation in figure 7 shows for Ram=250 that the 

maximum value correspond to   =270° where the convection is taking place in the region of the cold fluid at the 

lower annular space. The local Sherwood number which interprets the mass transfer allows us to note that the 

Figure 5: Streamlines, isotherms and concentration contours for Ram=100, N=1 and Le=0.1 

   Figure 6: Streamlines, isotherms and concentration contours for Ram=250, N=1 and Le=0.1 
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Sherwood number increases with increasing of Rayleigh-Darcy number due to the aiding effect of thermal and 

solutal buoyancies. The mass transfer is enhanced due the convection mode that take place in the upper annular 

space, however, the solutal distribution remains dominated by a diffusive mode due to the high solutal diffusivity 

compared to the thermal diffusivity when Le=0.1 and for this same reason we have Sherwood values very small 

compared to Nusselt values.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

 

Heat and mass transfer of natural convection in a porous cylindrical annulus saturated by a Newtonian fluid 

was studied by a numerical method using the method of finite volumes and the vorticity-streamline formulation. 

We examined, in particular, the influence of Rayleigh-Darcy number in a range of [10-250] for the case when 

the thermal and the solutal buoyancies are equal and cooperating in the generation of the flow structure. The 

structures of bicellular convection take place according to the value of the Rayleigh-Darcy number.  Both heat 

and mass transfer distributions are very sensitive to the variation of Rayleigh-Darcy number. When increasing 

Rayleigh-Darcy number, the heat transfer is dominated by the convective mode in the entire annular space. The 

mass transfer remains dominated by a diffusive mode due to the high solutal diffusivity which is ten times higher 

than the thermal diffusivity for Le=0.1. With the increase of Rayleigh-Darcy number the convection mode of the 

mass transfer rises in the upper space as consequence of the aiding effect of the thermal and the solutal 

buoyancies when the buoyancy ratio N=1. 

 

 

Nomenclature  
 

Symbol Definition Unit 

a Thermal diffusivity m
2
/s 

A Elliptic cylinder major axis m 

B Elliptic cylinder minor axis m 

c Constant defined in elliptic 

coordinates 

m 

cp Specific heat at 

constant pressure 

            J/kg.K 

D Concentration diffusivity       m
2
/s 

C Mass concentration       g/l 

C1 Inner wall’s concentration       g/l 

C2

  

Outer wall’s concentration       g/l 

Da Darcy number  

e Elliptic cylinder 

eccentricity, 

 

g Gravitational acceleration      m/s
2
 

Gr Grashof number, 

[=gc
3
(T1-T2)/

-2
] 

 

h Dimensional metric 

coefficient 

     m 

H Dimensionless metric 

coefficient 

 

K Porous medium 

permeability 

     m
2
 

Le Lewis Number  

N Buoyancy ratio,  

[=cC/TT]          

 

Nu Local Nusselt number  

P Pressure    N/m
2
 

Pr Prandtl number  

Ra Rayleigh number, [=Gr.Pr]  

Ram Rayleigh-Darcy number, 

[=Ra.Da] 
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Figure 7: Variation of local Nusselt and Sherwood numbers on the inner wall for Le=0.1and N=1 



Sh Local Sherwood number  

t Time        s 

T Fluid’s temperature       K 

T1

  

Inner wall’s temperature       K 

u Velocity component-

coordinate x 

m/s 

v Velocity component-

coordinate y 

m/s 

U Velocity component-

coordinate  

m/s 

V

 

    

Velocity component-

coordinate  

 

V  
Velocity vector m/s 

x, y Cartesian coordinates m 

 

Greek Letters 

  

α Inclination angle ° 

C Concentration expansion 

coefficient 

(g/l)
-1

 

 Thermal expansion K
-1

 

  coefficient 

 Thermal conductivity        W/m.K 

 Kinematic viscosity, m
2
/s 

 Porosity  

T Thermal capacity factor  

∆C Concentration difference, 

[=C1-C2] 

g/l 

∆T Temperature difference, 

[=T1-T2], 

K 

 Density kg/m
3
 

 Stream function m
2
/s 

η, θ Elliptic coordinates  

   

Subscripts   

1 Inner  

2 Outer  

p Porous  

 

Superscripts 

  

+ Dimensionless parameters  
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